

Unistat[®] 830

Controlling a 200 W (172 kcal / hr) exothermic reaction in a Radleys 10-litre jacketed reactor

Requirement

The graphic illustrates the dynamic of a Unistat 830 working with a Radleys 10-litre glass reactor. An exothermic reaction is simulated at 0 °C with a power of 200 W (172 kcal / hr).

Method

The Unistat and reactor are connected using two 1.5-metre insulated metal hoses. The reactor is filled with 7.5 litre of "M90.055.03", a Huber supplied silicon based HTF. The exothermic reactions are simulated using a controlled electric immersion heater.

Results

The heat input results in a temperature rise of approx. 3 K. The internal temperature jumps to approx. -26.3 °C to pull the process temperature back to its initial conditions. In 22 minutes the process temperature recovers to 0 °C. The heater is then removed from the reactor (at 02:55:00) and the sudden heat loss is compensated in 17 minutes.

Setup details

Unistat® 830 & Radleys reactor

Temperature range:	-85200 °C
Cooling power:	3.8 kW @ 100 °C
	3.6 kW @ 0 °C
Heating power:	3 kW
Hoses:	2x1.5 m; M30x1.5 (#6386)
HTF:	DW-Therm (#6479)
Reactor:	10-litre jacketed glass
	reactor
Reactor contents:	7.5 litre M90.055.03
	(#6259)
Reactor stirrer speed:	80 rpm
Control:	process

