

Unistat[®] 610w

200 W (172 kcal/min.) and 300 W (258 kcal / hr) exothermic reactions at 0 $^\circ C$ in a Radleys 10-litre jacketed glass reactor

Requirement

A Unistat 610w is used to control process temperature during simulated exothermic reactions in a Radleys 10-litre glass reactor.

Method

The reactor and Unistat are connected withtwo M30x1.5 insulated metal hoses. The reactor is filled with 7.5 litre of "M90.055.03", a Huber supplied silicon based HTF.

Results

The heat generated by the 200 W simulated exothermic reaction results in a temperature rise of 2 °C. The Unistat 610w cools the jacket at a rate of 8.5 K/min. to -25.7 °C in order to bring the process temperature back to the set-point of 0 °C within 6 minutes. The second test with a simulated exothermic reaction of 300 W results in a process temperature rise of 3.5 °C. The jacket temperature rapidly cools to -37 °C in just 4 minutes and pulls the process temperature back to 0 °C in 8 minutes.

Setup details

Unistat[®] 610w & Radleys reactor

Temperature range:	-60200 °C
Cooling power:	7.0 kW @ 2000 °C
	6.4 kW @ -20 °C
	3.3 kW @ -40 °C
	0.8 kW @ -60 °C
Heating power:	6.0 kW
Hoses:	2x1.5 m; M30x1.5
	(#6386)
HTF:	DW-Therm (#6479)
Reactor:	10-litre jacketed glass
	reactor
Reactor content:	7.5 litre M90.055.03
	(#6259)
Stirrer speed:	80 rpm

process

Control:

