

Unistat 405

Unistat 405 controlling 2-litres glass-jacketed Asahi reactor

Requirement

This case study demonstrates the ability of the Unistat 405 to control the temperature of the reaction mass in a 2-litres glass-jacketed reactor from Asahi between -40°C and +25°C.

The graphics show the speed, accuracy and stability of the Unistat 405 as each new set-point is reached.

Method

Asahi 2-litres reactor was connected to Unistat 405 using two M16x1 flexible hoses. The thermofluid used in the system was M40.165/220.10. "Process" control was carried out via a Pt100 sensor located in the process mass. Stirrer speed was set to 150 rpm.

Setup details

Temperature range:	-45°C+250°0
Cooling power:	1.00 kW @ +1
	1.00 kW @ 0°0
	0.60 kW @ -20
	0.15 kW @ -40
Heating power:	3.0 kW
Hoses:	M16 x 1,0 m
Thermofluid:	M40.165/220.
Reactor:	Asahi 2-litres re
Reactor content:	Methanol (1 l)
Stirrer speed:	150 rpm
Control:	Process
Amb. temperature:	+25°C

250°C 00°C 0°C 0°C .10 eactor

Results 1. Performance:

The graphics show the speed, accuracy and stability of the Unistat 405 as each new set-point is reached.

Start T	End T	Time Taken	Av. Ramp Rate
+25°C	-20°C	35 Minutes	1.3 K/min
-39°C	+15°C	35 Minutes	1.5 K/min

2. Lowest achievable temperature (Tmin, Process mass):

The graphic shows that the minimum achievable process temperature was -39.0°C.

3. Stability:

The graphic shows the temperature stability of +/-0.02K at +20°C.

