

Grande Fleur

Grande Fleur cycling 1-liter Chemglass jacketed reactor

Requirement

This Case Study demonstrates the minimum achievable process temperature and the process temperature control abilities of the Grande Fleur when it is connected with a Chemglass 1-liter jacketed reactor.

Method

The 1-liter Chemglass jacketed reactor was connected to Grande Fleur using 1-meter M16 metal insulated hoses. The thermofluid used in the system was DW-Therm. Process control was carried out via a Pt100 sensor located in the process mass. Stirrer speed was set to 150 rpm.

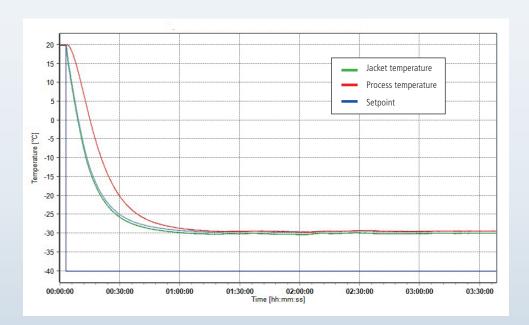
Setup details

Temperature range: -40°C...+200°C Cooling power: 0.6 kW @ +20°C

0.6 kW @ 0°C 0.35 kW @ -20°C

Heating power: 1.5 kW

Hoses: 2*1 m metal insulated HTF: DW-Therm


Reactor: 1-liter Chemglass jacketed reactor Reactor content: 0,75 | DW-Therm

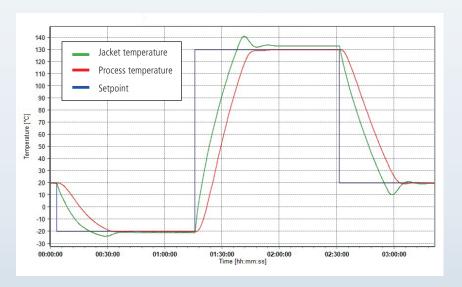
Stirrer speed: 150 rpm Control: process

Results

1. Lowest achievable temperature (Tmin):

The graphic shows that the process reaches a temperature of -29°C.

2. Performance:


The graphic shows that process temperature reaches -20°C approximately 29 minutes after the setpoint of -20°C is entered. It takes the unit about 37 minutes to stabilize the process temperature at ± 0.03 °C.

After the new setpoint of 130°C is entered, it takes the Grande Fleur approximately 40 minutes to heat the process mass up to this point and about 44 minutes to stabilize process temperature at ±0.03°C.

Finally, it takes the Grande Fleur approximately 32 minutes to cool the process mass back down to +20°C and about 44 minutes to stabilize the temperature at ± 0.03 °C.

Start T	End T	Approximate time	Av. Ramp Rate
+20°C	-20°C	29 minutes	1.38 K/min
-20°C	+130°C	40 minutes	3.75 K/min
+130°C	+20°C	32 minutes	3.44 K/min

