

Unistat® 912w

Temperature control of the 100-liter **Chemglass reactor**

Requirement

This case study demonstrates the ability of the Unistat 912w to control the process temperature in a Chemglass 100-litre glass jacketed reactor.

Method

The Unistat and reactor were connected using two metal hoses M30. The reactor was filled with 78 liters of Ethanol. "Process" control was carried out via a Pt100 sensor located in the process mass. Stirrer speed was set to 65 rpm.

Setup details

Temperature range: -90 ... +250°C Cooling power: 7,0 kW @ 0°C

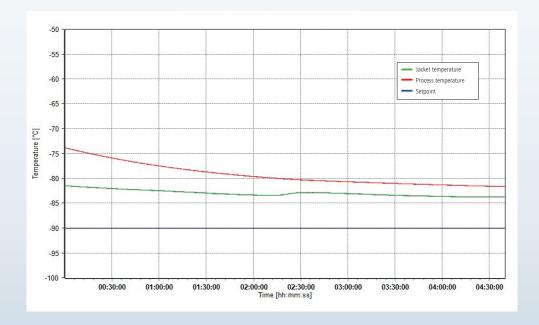
7,0 kW @ -20°C 6,0 kW @ -40°C

Heating power: 6,0 kW

Hoses: 2 x M30 metal Insulated

HTF: DW-Therm

100 litres glass jacketed Reactor: 78-liters Ethanol Reactor content:

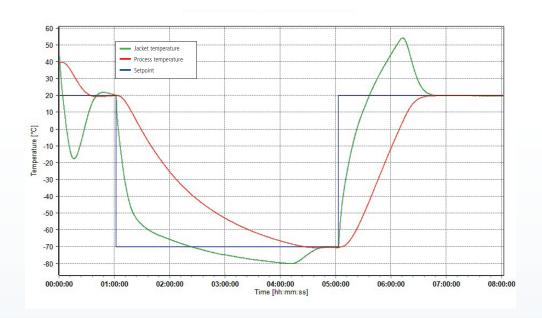

Reactor stirrer speed: 65 rpm

Process Control: Amb. temperature: +25°C

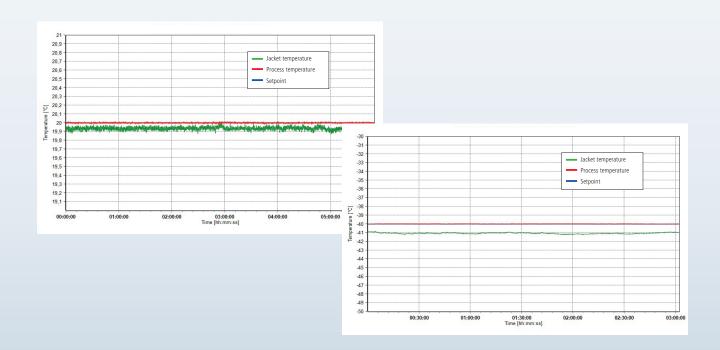
Results

1. Lowest achievable temperature (Tmin):

The graphic shows the minimum achievable process temperature to be -81.6°C.



2. Performance:


The table and the graphic shows the speed, accuracy and stability as the process is changed to each new set-point.

Start T	End T	Approximate time	Av. Ramp Rate	Fastest Ramp Rate
+20°C	-70°C	205 minutes	0.4 K/min	(+10°C to -20°C) 0.7 K/Min
-70°C	+20°C	104 minutes	0.9 K/min	(-20°C to +10°C) 1.9 K/Min

3. Stability:

The table and the graphic shows tight and absolute stable control with the jacket temperature being continually adjusted to hold the process temperature rock-steady at both temperatures: at 20°C and -40°C.

