Unistat[®] 510w Setup details

Unistat[®] 510w & Chemglass 50-litre reactor

50-litre °C and	Temperature range: Cooling power:	-
eed of ievable is con-	Heating power:	(
	Hoses:	2
	HTF:	(
	Reactor:	(
		(

Reactor content:

Stirrer speed:

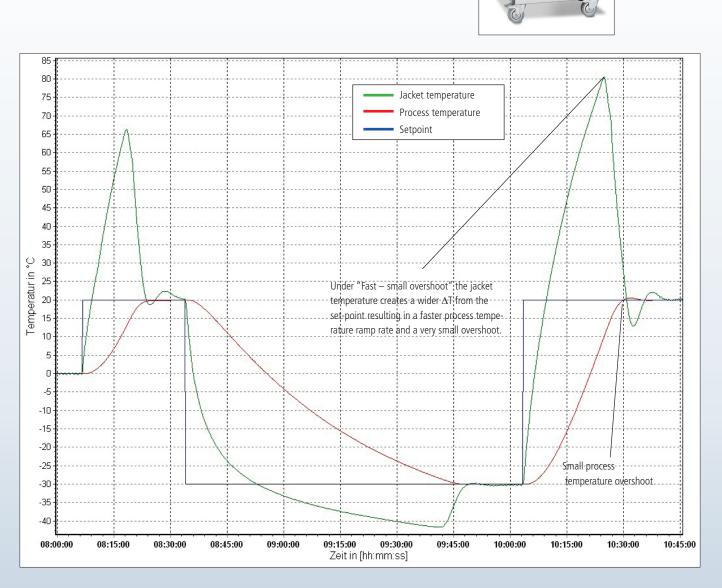
Control:

Cooling and heating a Chemglass 5 jacketed glass reactor between 20

Requirement

-30 °C

This case study demonstrates the sp response and level of control achi when a Chemglass 50-litre reactor nected to a Unistat 510w.


Method

The Unistat and reactor were connected using two 1.5 m insulated metal hoses. The reactor was filled with 37 litre of "M90.055.03", a Huber supplied silicon based HTF.

Results

The process is ramped from 20 °C to -30 °C (50 K) in approximately 70 minutes while heating back to 20 °C takes approximately 25 minutes. In both cases the process reaches and maintains the new set-point with negligible over or under shoot.

-50...250 °C 5.3 kW @ 250...0 °C 2.8 kW @ -20 °C 0.9 kW @ -40 °C 6.0 kW 2x1.5 m; M30x1.5 (#6659) DW-Therm (#6479) 50-litre Chemjacketed glass reactor (un-insulated) 37 litre M90.055.03 80 rpm process

